

You can draw here

You can draw here

Reminders/Announcements

- 6 PM
- this week, post on the Piazza thread!
 - that after Bonus Test 2

New Post Search or add a post		note @34
▼ PINNED	r	
HW6 - Question 16 and 17	3	Week 6: V
Instr Week 6: Worked Example fro	3	Hello all,
 Added to reading list (expired) 1 Unresolved Followup 		As promised, h test/bonus test test problems a
Instr Extra Math Resources	3	

Bonus Test 2 (Chapters 4 and 5) starts today from 6PM - Saturday at

- Remember: If you want me to record a worked example for content

Arrow question (from last class) was a test question so I'll record

6 回 🛧 🖬 🗸

stop following

Norked Example from Chapter 5 or 6

nere's a thread where you can make suggestions of any textbook, HW problems, or t problems you want me to do a worked example of. Note that for fairness, I will only do after the bonus test is done.

Reminders/Announcements

Homework (due Wed 6 pm)

Week 7

Week 8 Week 9

Week 10

HW01 - Intro to Mastering Physics HW02 - Chapter 2 HW03 - Chapter 3 HW04 - Chapter 4 HW05 - Chapter 5 N/A

HW07 - Chapter 6

HW08 - Chapter 7

Test/Bonus Test (Thurs 6pm - Sat 6pm)

Learning Log (Sat 6pm)

Test 0 (not for marks) Test 1 (on Chapters 2 & 3) Bonus Test 1 Test 2 (on Chapters 4 and 5) N/A

Bonus Test 2

Test 3

Learning Log 1

Learning Log 2

Learning Log 3

Learning Log 4

N/A

Learning Log 5

Learning Log 6

Summary of comments from Homework 7 (Chapter 6)

Students Completed

96 / 322

Too long of a break from physics?

Summary of comments from Homework 7 (Chapter 6)

- Questions 16 and 17 required calculus... (extra credit)
- Terminal velocity and Drag
- No penalty for multiple attempts on HW?
- Truck and box of nails; incline plane
- More accurate Free Body diagrams with complex angles

Students Completed

96 / 322

Too long of a break from physics?

An investigation has been opened into contract cheating.

If you have an account on a course "help" site, or have used someone else's account, or have accessed "help" sites during a Test, or have used "help" sites during a Lab, or have had someone else write your Test for you, or anything else similar that would constitute as academic dishonesty,

You have one chance ...

You should self-report (form coming soon) for leniency. Otherwise, if you are caught, an investigation will be opened. You do not want this.

Course "help" sites: Chegg, CourseHero, Slater, etc...

Causes of Friction

- All surfaces are very rough on a microscopic scale.
- When two surfaces are pressed together, the high points on each side come into contact and form molecular bonds.
- The amount of contact depends on the normal force n.
- When the two surfaces are sliding against each other, the bonds don't form fully, but they do tend to slow the motion.

Two surfaces in contact

Very few points are actually in contact.

Molecular bonds form between the two materials. These bonds have to be broken as the object slides.

Drag

- The air exerts a drag force on objects as they move through the air.
- Faster objects experience a greater drag force than slower objects.
- The drag force on a high-speed motorcyclist is significant.
- The drag force direction is opposite the object's velocity.

Drag

For normal-sized objects on earth traveling at a speed v which is less than a few hundred meters per second, air resistance can be modeled as

 $\vec{F}_{drag} = \left(\frac{1}{2}C\rho Av^2\right)$, direction opposite the motion)

- A is the cross-section area of the object.
- ρ is the density of the air, which is 1.3 kg/m³, at atmospheric pressure and 0°C, a common reference point of pressure and temperature.
- C is the drag coefficient, which is a dimensionless number that depends on the shape of the object.

For normal-sized objects on earth traveling at a speed v which is less than a few hundred meters per second, air resistance can be modeled as

 $\vec{F}_{drag} = \left(\frac{1}{2}C\rho Av^2\right)$, direction opposite the motion)

• A is the cross-section area of the object. Cross-section areas for objects of different shape.

© 2017 Pearson Education, Inc.

A falling object reaches terminal speed

Terminal speed is reached when the drag force exactly balances the gravitational force: $\vec{a} = \vec{0}$.

 $\vec{F}_{\rm drag}$

 \vec{F}_{G}

Example 6.7 Air Resistance Compared to Rolling Friction

EXAMPLE 6.7 Air resistance compared to rolling friction

VISUALIZE FIGURE 6.20 shows the car and a free-body diagram. A full pictorial representation is not needed because we won't be doing any kinematics calculations.

Two Explanatory Models

An object on which there is no net force is in mechanical equilibrium.

- Objects at rest.
- Objects moving with constant velocity.
- Newton's second law applies with $\vec{a} = \vec{0}$.

An object on which the net force is constant undergoes dynamics with constant force.

- The object accelerates.
- The kinematic model is that of constant acceleration.
- Newton's second law applies.

Go back and forth between these steps as needed.

A Problem-Solving Strategy

A four-part strategy applies to both equilibrium and dynamics problems.

MODEL Make simplifying assumptions. VISUALIZE

- Translate words into symbols.
- Draw a sketch to define the situation.
- Draw a motion diagram.
- Identify forces.
- Draw a free-body diagram. **SOLVE** Use Newton's second law:

$$\vec{F}_{net} = \sum_{i}$$

"Read" the vectors from the free-body diagram. Use kinematics to find velocities and positions.

ASSESS Is the result reasonable? Does it have correct units and significant figures?

- $\vec{F}_i = m\vec{a}$

Specific in	nformation about three important desc
Gravity	$\vec{F}_{\rm G} = (mg, \text{downward})$
Friction	$\vec{f}_{s} = (0 \text{ to } \mu_{s} n, \text{ direction as necessary})$
	$\vec{f}_{k} = (\mu_{k}n, \text{ direction opposite the mot})$
	$\vec{f}_{\rm r} = (\mu_{\rm r} n, \text{ direction opposite the mot})$
Drag	$\vec{F}_{drag} = \left(\frac{1}{2}C\rho Av^2\right)$, direction opposite

Newton's laws are vector expressions. You must write them out by **components:**

$$(F_{\text{net}})_x = \sum F_x = ma_x$$

 $(F_{\text{net}})_y = \sum F_y = ma_y$

The acceleration is zero in equilibrium and also along an axis perpendicular to the motion.

riptive models:

- y to prevent motion)
- tion)
- the motion)

© 2017 Pearson Education, Inc.

Chapter 5 Clicker Questions

A box on a rough surface is pulled by a horizontal rope with tension *T*. The box is not moving. In this situation,

A.
$$f_s > T$$

B. $f_s = T$
C. $f_s < T$
D. $f_s = \mu_s mg$
E. $f_s = 0$

A box on a rough surface is pulled by a horizontal rope with tension *T*. The box is not moving. In this situation,

A.
$$f_s > T$$

B. $f_s = T$ Newton's first law.
C. $f_s < T$
D. $f_s = \mu_s mg$
E. $f_s = 0$

A box with a weight of 100 N is at rest. It is then pulled by a 30 N horizontal force.

Does the box move?

- A. Yes
- B. No
- C. Not enough information to say.

A box with a weight of 100 N is at rest. It is then pulled by a 30 N horizontal force.

Does the box move?

A. Yes **B.** No $30 \text{ N} < f_{\text{s max}} = 40 \text{ N}$

C. Not enough information to say.

A box is being pulled to the right over a rough surface. $T > f_k$, so the box is speeding up. Suddenly the rope breaks.

What happens? The box

- Stops immediately. A.
- B. Continues with the speed it had when the rope broke.
- C. Continues speeding up for a short while, then slows and stops.
- Keeps its speed for a short while, then slows and stops. D.
- E. Slows steadily until it stops.

A box is being pulled to the right over a rough surface. $T > f_k$, so the box is speeding up. Suddenly the rope breaks.

What happens? The box

- Stops immediately. A.
- B. Continues with the speed it had when the rope broke.
- C. Continues speeding up for a short while, then slows and stops.
- D. Keeps its speed for a short while, then slows and stops.

E. Slows steadily until it stops.

A box is being pulled to the right at steady speed by a rope that angles upward. In this situation:

- A. n > mg
- B. n = mg
- C. n < mg
- **D**. n = 0
- Not enough information to judge the size of the normal force. Ε.

A box is being pulled to the right at steady speed by a rope that angles upward. In this situation:

- A. n > mg
- B. n = mg
- C. n < mg
- **D**. n = 0
- Not enough information to judge the size of the normal force. Ε.

A box is being pulled to the right by a rope that angles upward. It is accelerating. Its acceleration is

A.
$$\frac{T}{m}(\cos\theta + \mu_k \sin\theta) - \mu_k g$$

$$\mathsf{B.} \ \frac{T}{m} \left(\cos\theta - \mu_{\mathrm{k}} \sin\theta \right) - \mu_{\mathrm{k}} g$$

C.
$$\frac{T}{m}(\sin\theta + \mu_k\cos\theta) - \mu_k g$$

D.
$$\frac{T}{m} - \mu_k g$$

$$\mathsf{E.} \quad \frac{T}{m} \cos\theta - \mu_{\mathbf{k}} g$$

l have to work this ut.

just guess!

A box is being pulled to the right by a rope that angles upward. It is accelerating. Its acceleration is

$$\mathbf{A} \cdot \frac{T}{m} (\cos\theta + \mu_k \sin\theta) - \mu_k g$$

B.
$$\frac{T}{m}(\cos\theta - \mu_k \sin\theta) - \mu_k g$$

C.
$$\frac{T}{m} (\sin\theta + \mu_k \cos\theta) - \mu_k g$$

D.
$$\frac{T}{m} - \mu_k g$$

$$\mathsf{E.} \quad \frac{T}{m} \cos\theta - \mu_{\mathbf{k}} g$$

l have to work this ut.

just guess!

Example 6.10 Make Sure the Cargo Doesn't Slide

EXAMPLE 6.10 Make sure the cargo doesn't slide

VISUALIZE This situation is shown in **FIGURE 6.26**. There is only one horizontal force on the box, $\vec{f_s}$, and it points in the *forward* direction to accelerate the box. Notice that we're solving the problem with the ground as our reference frame. Newton's laws are not valid in the accelerating truck because it is not an inertial reference frame.

Known

m = 100 kgBox dimensions 50 cm × 50 cm × 50 cm $\mu_s = 0.40 \quad \mu_k = 0.20$

 $\overrightarrow{F_{G}}$

Find

Acceleration at which box slips

You try! Answer is: 3.9 m/s²

Example 6.10 Make Sure the Cargo Doesn't Slide

